

Feb 19-8:47 AM

$$
\begin{aligned}
& \text { Rotate that region by } x \text {-axis, find the volume. } \\
& \frac{\int_{2}}{2} \underset{4}{4} \\
& \text { Ref. Rec. } 1 \text { A.O.R. } \\
& \begin{aligned}
\int_{2}^{4} \pi x^{2} d x=\left.\pi \frac{x^{3}}{3}\right|_{2} ^{4}=\frac{\pi}{3}\left(4^{3}-2^{3}\right) & =\frac{\pi}{3}(64-8) \\
& =\frac{56 \pi}{3}
\end{aligned}
\end{aligned}
$$

Dec 6-10:30 AM

Draw the top-half of a circle with radius 2 and Centerelat $(4,0)$.

Rotate about x-axis and Sind volume $y=\sqrt{4-(x-4)^{2}}$
Ref. Rect. \perp A.O.R. \Rightarrow Disk Method
Region is attached 100% To A.O.R. πR^{2}
$V=\int_{2}^{6} \pi\left(\sqrt{4-(x-4)^{2}}\right)^{2} d x=\pi \int_{2}^{6}\left(4-(x-4)^{2}\right) d x$
Sphere $V=\frac{4 \pi r^{3}}{3}=\frac{4 \pi(2)^{3}}{3}=\frac{32 \pi}{3}$
r
\qquad L
\qquad

Dec 6-10:40 AM

Now let's rotate about Y-axis.
$\underbrace{2}_{-6}$
\qquad
\qquad Ref. Rect is
Parallel to A.O.R. \Rightarrow Shell Method $2 \pi D$
$V=\int_{2}^{6} 2 \pi x \cdot \sqrt{4-(x-4)^{2}} d x \quad \begin{array}{lll}\text { Distance } & \text { Height of } \\ & \text { From A.OR. } & \text { Ref. Rect. }\end{array}$
Try to evaluate this by Thursday

Consider the enclosed region by $f(x)=\sin x^{2}, x$-axis, from $x=0$ to $x=\sqrt{\pi}$.

Let's rotate about Y-axis, find the volume
Ref. Rect. parallel to A.O.R. \Rightarrow shell Method

$$
\begin{aligned}
& V=\int_{0}^{\sqrt{\pi}} 2 \pi \cdot x \cdot \sin x^{2} d x \\
& 2 \pi \cdot D \cdot H \\
& \begin{array}{ll}
u=x^{2} & x=0 \rightarrow u=0 \\
d u=2 x d x & x=\sqrt{\pi} \rightarrow u=\pi
\end{array} \\
& \begin{aligned}
=\int_{0}^{\pi} \pi \sin u d u=\pi \cdot-\left.\cos u\right|_{0} ^{\pi} & =-\pi[\cos \pi-\cos 0] \\
& =2 \pi
\end{aligned}
\end{aligned}
$$

Dec 6-10:54 AM

Draw the enclosed region by $f(x)=\frac{1}{x}, x$-axis, $x=1$ and $x=3$.

$A=\int_{1}^{3}($ Top -Bottom $) d x=\int_{1}^{3}\left(\frac{1}{x}-0\right) d x=\int_{1}^{3} \frac{1}{x} d x$
$=\left.\ln x\right|_{1} ^{3}$
$=\ln 3-\ln 1{ }^{\circ 0}$ $=\ln 3 \approx 1.1$

Rotate the region by x-axis.

$$
\begin{aligned}
V & =\int_{1}^{3} \pi\left(\frac{1}{x}\right)^{2} d x \\
& =\pi \int_{1}^{3} x^{-2} d x \\
& =\left.\pi \cdot \frac{x^{-1}}{-1}\right|_{1} ^{3} \\
& =-\left.\pi \cdot \frac{1}{x}\right|_{1} ^{3} \\
& =-\pi\left[\frac{1}{3}-1\right]=-\pi \cdot \frac{-2}{3}
\end{aligned}
$$

$$
=\frac{2 \pi}{3}
$$

Dec 6-11:06 AM

Now let's rotate about Y-axis.

$$
v=\int_{1}^{3} 2 \pi \cdot x \cdot \frac{1}{x} d x=\left.2 \pi \cdot x\right|_{1} ^{3}=2 \pi(3-1)=4 \pi
$$

Consider the shaded region below

\qquad

\qquad

Rotate about x-axis. Find Volume
$\begin{aligned} & \text { Disk } \\ & \text { washer }\end{aligned} \quad V=\int_{0}^{2} \pi\left[R^{2}-r^{2}\right] d x$ Shell $\quad=\pi \int_{0}^{2}\left[\left(\frac{1}{2}+x^{2}\right)^{2}-(x)^{2}\right] d x=\square$
Rotate about y-axis, find volume

$$
\begin{aligned}
& \text { Disk } \\
& \text { washer } \\
& \text { shell }
\end{aligned} \quad V=\int_{0}^{2} 2 \pi(x) \cdot\left(\frac{1}{2}+x^{2}-x\right) d x=\square
$$

Dec 6-11:12 AM

Rotate the region bounded by $y=\sqrt{x}, y=0$, and $x=9$

1) about $x=9$
2) about $y=3$.

\qquad
\qquad
\qquad

$$
\begin{array}{ll}
x+D=9 & \\
D=9-x & \\
& V=\int_{0}^{9} 2 \pi(9-x) \cdot \sqrt{x} d x=\square
\end{array}
$$

\qquad
\qquad

$$
\left.V=\int_{0}^{\text {Washer }} \pi\left[R^{2}-r^{2}\right] d x=\pi \int_{0}^{9}\left[3^{2}-(3-\sqrt{y})^{2}\right)\right] d x
$$

\qquad
\qquad
\qquad
\qquad
\qquad

